Assignment $\frac{5}{2}$.

This homework is due on last day of classes, December 11.

This assignment is worth as much as a normal homework assignment in terms of course grade, and is not included in denominator of your course grade. That is, it's a freebie.

There are total 10 problems in this assignment. Each problem is worth 10 points. 90 points is considered 100%. If you go over 90 points, you will get over 100% for this homework and it will count towards your course grade (but not over 115%).

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper and *credit your collaborators*. Your solutions should contain full proofs. Bare answers will not earn you much.

1. Algebraic axioms of \mathbb{R} . Quick cheat-sheet

REMINDER. (Subsection 2.1.1) On the set \mathbb{R} of real numbers there two binary operations, denoted by + and \cdot and called addition and multiplication, respectively. These operations satisfy the following properties:

- (A1) a + b = b + a for all $a, b \in \mathbb{R}$,
- (A2) (a+b) + c = a + (b+c) for all $a, b, c \in \mathbb{R}$,
- (A3) there exists $0 \in \mathbb{R}$ s.t. 0 + a = a + 0 = a for all $a \in \mathbb{R}$,
- (A4) for each $a \in \mathbb{R}$ there exists an element -a s.t. a + (-a) = (-a) + a = 0,
- (M1) ab = ba for all $a, b \in \mathbb{R}$,
- (M2) (ab)c = a(bc) for all $a, b, c \in \mathbb{R}$,
- (M3) there exists $1 \in \mathbb{R}$ s.t. $1 \cdot a = a \cdot 1 = a$ for all $a \in \mathbb{R}$,
- (M4) for each $a \neq 0$ in \mathbb{R} there exists an element 1/a s.t. $a \cdot (1/a) = (1/a) \cdot a = 1$, (D) a(b+c) = ab + ac and (b+c)a = ba + ca for all $a, b, c \in \mathbb{R}$.

We also assume $0 \neq 1$. The number a + (-b) is denoted by a - b. The number $a \cdot b^{-1}$ is denoted by a/b or $\frac{a}{5}$.

2. Exercises

Every equality you write in this section should be accompanied by a reference to the exact property (A1)–(A4), (M1)–(M4), or (D) of real numbers or a previously proved claim you are using.

- (1) (a) Prove that there is only one 0. (*Hint:* Suppose there are two, 0_1 and 0_2 . Consider the number $0_1 + 0_2$.)
 - (b) Prove that each $a \in \mathbb{R}$ has a unique opposite number -a. (*Hint:* Suppose there are two, $(-a)_1$ and $(-a)_2$. Consider the expression $(-a)_1 + a + (-a)_2$.)
 - (c) Prove that for every $a \in \mathbb{R}$, -(-a) = a. (*Hint:* Look at the definition of -a.)
 - (d) Prove that the equation a+x = b has a unique solution. (*Hint:* Assume that some specific x is a solution. Add -a = -a to the equality.)
- (2) (a) Prove that there is only one 1.
 - (b) Prove that each nonzero $a \in \mathbb{R}$ has a unique inverse number a^{-1} .
 - (c) Prove that for every $a \in \mathbb{R}$, $(a^{-1})^{-1} = a$ whenever $a \neq 0$.
 - (d) Prove that the equation ax = b has a unique solution whenever $a \neq 0$.

— see next page —

- (3) (a) Prove that for every $a \in \mathbb{R}$, $a \cdot 0 = 0$. (*Hint:* Consider $a \cdot 0 + a \cdot 0$.)
 - (b) Prove that if ab = 0 then a = 0 or b = 0. (*Hint:* If $b \neq 0$, multiply the equality by $b^{-1} = b^{-1}$.)
 - (c) Suppose some set A with operations + and \cdot satisfies A1–A4, M1–M3, D but not necessarily M4. Then is it still true that if ab = 0 then a = 0 or b = 0?
- (4) Prove the following for every $a, b \in \mathbb{R}$.
 - (a) $a \cdot (-1) = -a$.
 - (b) $(-1) \cdot (-1) = 1.$
 - (c) $(-a) \cdot (-b) = a \cdot b.$
 - (d) $(-a)^{-1} = -(a^{-1})$ if $a \neq 0$.
 - (e) -(a+b) = (-a) + (-b).
 - (f) $(ab)^{-1} = (a^{-1}) \cdot (b^{-1})$ if $a, b \neq 0$.
 - (g) -(a/b) = (-a)/b if $b \neq 0$.
- (5) Let $a, b, c, d \in \mathbb{R}$ and $b, d \neq 0$. Prove that
 - (a) $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$.
 - (b) $\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + c \cdot b}{b \cdot d}$.

3. Order axioms of \mathbb{R} . Quick cheat-sheet

REMINDER. (Subsection 2.1.5) Let \mathbb{A} be a set with two operations + and \cdot satisfying A1–A4, M1–M3 and D (for example, \mathbb{Z} , \mathbb{Q} , \mathbb{R}). The set $\mathbb{P} \subset \mathbb{A}$ is called the set of *positive elements* if

- (i) If $a, b \in \mathbb{P}$, then $a + b \in \mathbb{P}$,
- (ii) If $a, b \in \mathbb{P}$, then $ab \in \mathbb{P}$,
- (iii) If $a \in \mathbb{A}$, then exactly one of the following holds: $a \in \mathbb{P}$, $a = 0, -a \in \mathbb{P}$.

Then we write a < b, b > a if and only if $b - a \in \mathbb{P}$; $a \le b, b \ge a$ if and only if $b - a \in \mathbb{P} \cup 0$.

4. More exercises

Every inequality you write in this section should be accompanied by a reference to the exact property (i)–(iii), or a previously proved claim that you are using.

- (6) Let $a, b, c \in \mathbb{R}$. Prove that
 - (a) If a > b and b > c then a > c. (*Hint:* a c = (a b) + (b c).)
 - (b) If a > b then a + c > b + c. (*Hint:* Use (i).)
 - (c) If a > b and c > 0 then ca > cb. (*Hint:* ca cb = c(a b).)
 - (d) If a > b and c < 0 then ca < cb.
- (7) (a) Prove that if $a \in \mathbb{R}$ and $a \neq 0$ then $a^2 > 0$. (*Hint:* Consider three cases according to (iii).)
 - (b) Prove that 1 > 0.
 - (c) Prove that if a, b > 0 then a/b > 0.
- (8) For $a, b, c, d \in \mathbb{R}$, prove that
 - (a) if a < b, $c \le d$, then a + c < b + d,
 - (b) if 0 < a < b, $0 < c \le d$, then 0 < ac < bd,
 - (c) Let 0 < a < b and c < d < 0. Give an example where ac < bd, an example where ac > bd, and an example where ac = bd.

— see next page —

2

5. Yet more exercises

- (9) On the set \mathbb{N} , consider two operations: \oplus and \odot defined as follows: $a \oplus b = ab$ and $a \odot b = a^b$.
 - (a) Do properties A1, A2 hold for ⊕? That is, is it true that a ⊕ b = b ⊕ a, and that (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) for all a, b, c ∈ N?
 (*Hint:* For this and further items, the main way to figure out questions is to write out expressions with ⊙ and ⊕ in terms of "usual" operations, using definition of ⊙ and ⊕)
 - (b) Do properties M1, M2 hold for \odot ?
 - (c) Is there unit element with respect to \odot ? That is, is there an element $1_{\odot} \in \mathbb{N}$ such that $1_{\odot} \odot a = a \odot 1_{\odot} = a$ for all $a \in \mathbb{N}$?
 - (d) Is there a *right* unit element with respect to \odot ? That is, is there an element $1_r \in \mathbb{N}$ such that $a \odot 1_r = a$ for all $a \in \mathbb{N}$?
 - (e) Is there a *left* unit element with respect to \odot ? That is, is there an element $1_{\ell} \in \mathbb{N}$ such that $1_{\ell} \odot a = a$ for all $a \in \mathbb{N}$?
 - (f) Is \odot distributive over \oplus on the left? That is, is it true that $(a \oplus b) \odot c = (a \odot c) \oplus (b \odot c)$?
 - (g) Is \odot distributive over \oplus on the right? That is, is it true that $c \odot (a \oplus b) = (c \odot a) \oplus (c \odot b)$?
- (10) In each case below, determine if P is a set of positive elements (i.e. whether it satisfies (i), (ii) and (iii)).
 - (a) $\mathbb{A} = \mathbb{Z}, P = \mathbb{N},$
 - (b) $\mathbb{A} = \mathbb{Z}, P = -\mathbb{N},$
 - (c) $\mathbb{A} = \mathbb{Q}, P = \{r \in \mathbb{Q} : r > 1\},\$
 - (d) $\mathbb{A} = \mathbb{Q}, P = \{r \in \mathbb{Q} : r > -1\},\$
 - (e) $\mathbb{A} = \mathbb{C}, P = \{z = x + iy \in \mathbb{C} : x > 0\},\$
 - (f) Prove that no subset of $\mathbb{A} = \mathbb{C}$ can serve as a set positive elements. (In other words, one cannot endow \mathbb{C} with a meaningful order.)